WATER QUALITY PRESENTATION

WATER CAUCUS STATEHOUSE

Defining the Problem

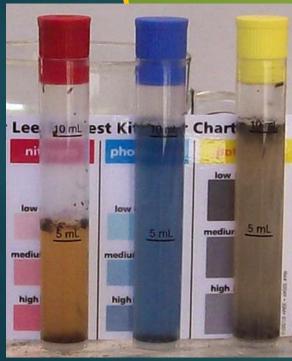
▶10,000 Leaks

Defining the Problem

- Vermont is fortunate to have an abundance of fresh water, rainwater and snowmelt;
- Vermont also has beautiful rolling hills and rivers;
- ▶ We all live downstream from someone;
- Currently, our water quality is being threatened;
- ▶ Clean water is essential for human and animal life.
- ► Most of the nutrients are entering our waterways on average in 15 rain events/year.

What excessive nutrients look like in our lakes and rivers

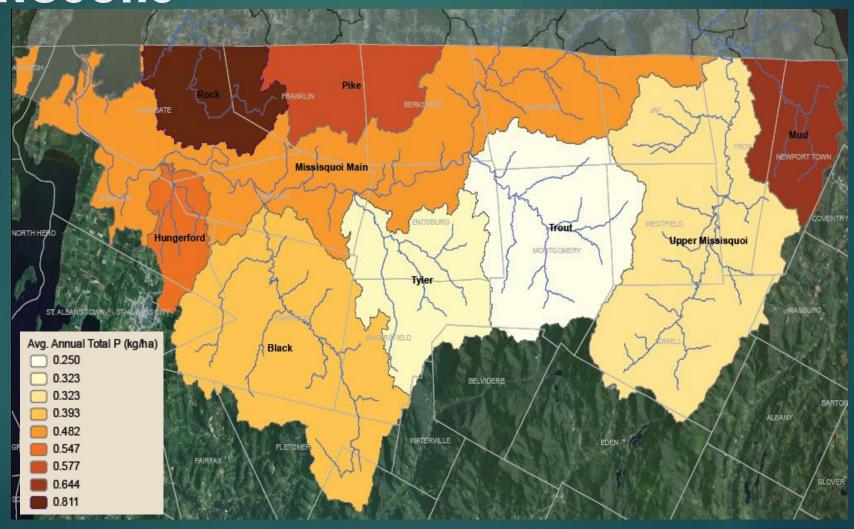
Nutrients Entering our Streams

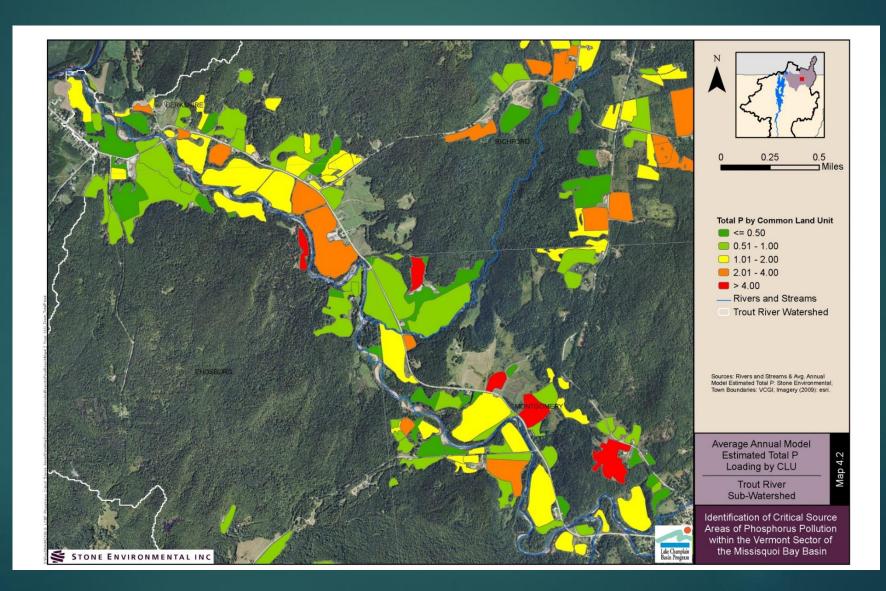


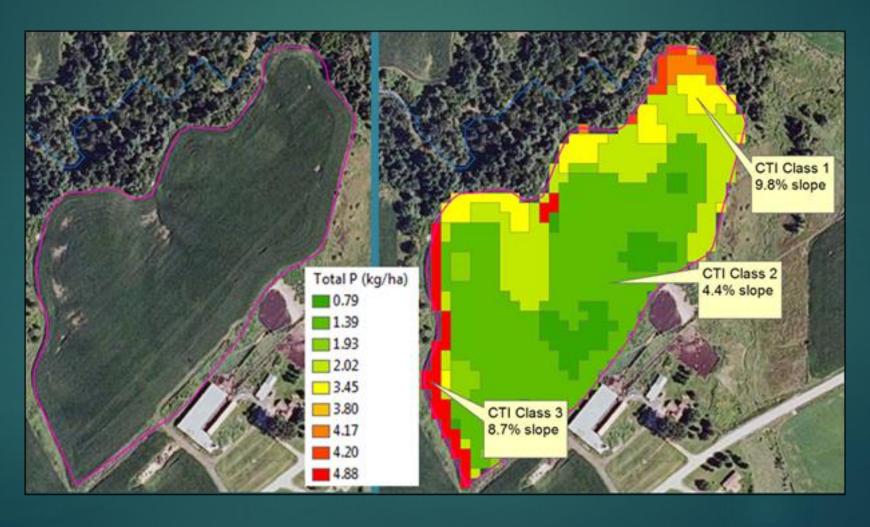
What can and should be done?

- 1. Focus our money and our resources;
- 2. Work in the Critical Source Areas of a watershed and the MOST IMPAIRED AREAS;
- 3. Be deliberate in our approach;
- 4. Work together to solve this issue because it matters to everyone;
- 5. Appropriately fund water quality clean up in Vermont!

What is a Critical Source Area?


Significant Phosphorus Source Opportunity for Phosphorus
Transport


Targeted Management


CSA Identification: Sub Watershed Level Results

CSA Identification: Field Level Results

CSA Identification: Sub-Field Level Results

BMP examples and on-going annual costs to the farm.

- ► Agriculture erosion projects:
- Would be the most beneficial and most cost effective for water quality:
 \$20,000 per farm per year for Implementation of field conservation practices that include:
 - ► Appropriate no-till acres
 - Conservation rotation
 - Acres that need to be taken out of production
 - ▶ Cover Crops
 - ▶ Ditch and River Buffers
 - Strip Cropping
 - Grassed waterways
 - ► Manure Injection

Tillage Practices

Reduced Tillage 39% P loss reduction 26.2 Tons/yr. P saved \$937,000 ongoing annual cost Very low cost \$12-22/lb. P reduction

Cover Crop

Before

Cover Crop 50% P loss reduction 33.2 Tons/yr. P saved \$4,000,000 ongoing annual cost Medium cost \$60/lb. P reduction

Buffers

Buffer

58% P loss reduction 12 T/yr. P saved \$380,000 ongoing annual cost Very Low cost \$14/lb. P reduction

Before

Grass Waterways

Before

(land retirement)
75 % P loss reduction
6 T/yr. P saved
\$1,518,144 ongoing annual cost
Highest cost \$120/lb. P reduction

Strip Cropping

Strip cropping (extended crop rotation)
75% + 3% P loss reduction
2 T/yr. P saved
\$224,760 ongoing annual cost
Medium cost \$53/lb. P reduction

Before

Manure Injection

Before

Examples of Practice and P Load Reductions Percentages

Practice	Reduced P Loss	Cost	Time Horizon
Conservation rotation and reduced tillage	50%-90%	Low	20 Years
Sedimentation ponds or constructed wetlands	85%	Medium	25 Years
Field terrace and strip cropping	77%	Medium	25 Years
End of tile phosphorous removal system	90%	Medium	10 Years
Cover crops	50% - 90%	Medium	Annual
Grazed pastures	59%	Low	30 Years
Buffers	58%	Low	30 Years
Conversion to energy crops for biomass	34%	Medium	Annual

What to do and what it costs

▶ Stormwater erosion projects:

▶600 projects in Franklin and Grand Isle Counties that we know of. We have completed 1% of them. The average project costs for road and developed land retrofits and best management practices are \$50,000.

Step Pool Drainage System in the Village of Enosburgh Falls \$35,000

Before

After

Green Infrastructure Island in Swanton \$20,000

Before After

Alburgh Shoreline Restoration Project

Before

What to do and what it costs

► Agriculture erosion projects:

- Would be the most beneficial and most cost effective for water quality:
 \$20,000 per farm per year for Implementation of field conservation practices that include:
 - ▶ Appropriate no-till acres
 - Conservation rotation
 - ▶ Acres that need to be taken out of production
 - ▶ Cover Crops
 - ▶ Ditch and River Buffers
 - Strip Cropping
 - Grassed waterways
 - ▶ Manure Injection
- ▶ \$4,000,000/year for 200 farms
- > \$20,000,000 over 5 years

What to do and what it costs

- ▶ Stormwater erosion projects:
 - ▶600 projects in Franklin and Grand Isle Counties that we know of. We have completed 1% of them. The average project costs for road and developed land retrofits and best management practices are \$50,000.
- ▶ \$6,000,000/year
- ▶ \$30,000,000 total over 5 years

Outreach, Education & Compliance Assistance

- Outreach, education, project identification, training, technical assistance, engineering design:
 - ▶ 8 people on the ground in Franklin County for 5 years.
 - ▶ Block grant to watershed organizations to implement the projects
- ▶ \$1,000,000/year
- ▶ \$5,000,000 total over 5 years
 - Staff and hours of inspections, compliance assistance:
 - ▶ 7 new people in the Agriculture Water Quality Division:
- ▶ \$1,000,000/year
- ▶ \$5,000,000 total over 5 years

Total Budget over 5 years

- >\$12,000,000/year
- >\$60,000,000 over 5 years